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Abstract
Birds provide important ecosystem services in many ecosystems, including important pest control effects on productive 
systems. The typically low bird diversity observed in intensive agricultural landscapes renders them more susceptible to 
pests that cause important economic losses. Although these pests have traditionally been controlled using chemical methods, 
recent work suggests that bird-mediated biological control is an effective and environmentally friendly form of ecological 
intensification practice. We conducted a global meta-analysis to synthesize the effect of the exclusion of wild birds on crop 
damage, pest abundance, and crop yield in agroecosystems. We used 179 case studies from 55 articles, from which we found 
that wild birds reduced crop damage and pest abundance, but increased crop yield. The positive effect of birds as biologi-
cal control agents was found to be significant on conventional farms using traditional chemical methods but not on organic 
farms. Our analysis shows that embracing ecological intensification practices such as using wild bird species as pest control 
represents a win–win strategy for agriculture and biodiversity.

Keywords Crop damage · Ecological intensification · Integrated pest management · Natural enemies · Pest abundance · 
Yield · Ecosystems services

Key message

• Wild birds play a major role in pest control services in 
the agroecosystems

• The presence of wild birds reduced crop damage, pest 
abundance, and increased crop yield

• Maintaining natural areas within productive lands 
enhance natural pest control services

• Ecological intensification practices are a win–win goal 
for farmers and the environment

Introduction

Pest control is one of the biggest challenges in modern agri-
culture (Tilman et al. 2002; Thrupp 2000; Manosathiyade-
van et al. 2017; Isman 2019). Intensive agriculture, which 
typically harbors low biodiversity (Tilman et al. 2002), is 
highly vulnerable to animal pests attack (including verte-
brates and invertebrates), leading to an average yield loss 
between 9 and 37% when crops are not protected (Oerke 
2006; Culliney 2014). The dominant strategy for pest con-
trol in intensive agriculture relies on the application of 
chemical methods, a practice that is neither economically 
nor ecologically sustainable (Chaplin-Kramer et al. 2011; 
Pimentel 2005; Isman 2019). As a result, strategies based 
on sustainable pest control, which include biological control, 
the replacement of toxic pesticides by more environmentally 
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friendly molecules, and the minimal application of chemi-
cal pesticide based on biological tolerance thresholds, have 
become increasingly important (Stenberg 2017; Dara 2019; 
Isman 2019). In this respect, recent ecological intensifica-
tion practices have promoted the integration of ecosystem 
services mediated by biodiversity into agroecosystems in 
order to maintain crop productivity while minimizing nega-
tive environmental impacts (Kleijn et al. 2019). Within eco-
logical intensification practices, the role of biodiversity and 
natural areas in agricultural landscapes has been highlighted 
for its value in sustaining insect and bird species that benefit 
crop production (Karp et al. 2013; Garibaldi et al. 2011).

Birds have important roles in different ecosystem func-
tions (Şekercioğlu et al. 2016; Pejchar et al. 2018; Whelan 
et al. 2015). In this context, birds have been documented to 
induce strong cascading effects by suppressing herbivores, 
such as insects, mammals, or even other bird species in many 
natural and human-modified ecosystems (Kross et al. 2012; 
Karp et al. 2013; Labuschagne et al. 2016; Peisley et al. 
2017; Chain-Guadarrama et al. 2019; Mooney et al. 2010; 
Mäntylä et al. 2011; Whelan et al. 2015; Mazía et al. 2009). 
There is increasing evidence highlighting the role of birds 
as biological control agents in agroecosystems, aiming to 
change the traditional biological control paradigm in agro-
ecosystems, which have overlooked the potential contribu-
tion of vertebrate predators over parasitoids and predatory 
insects (see review of García et al. 2020).

At a global scale, it has been estimated that birds consume 
between 400 and 500 million tons of arthropods per year in 
many biomes, including croplands ecosystems, thus con-
tributing in a significant way toward preventing crop dam-
age and loss (Fig. 1) (Karp et al. 2013; Nyffeler et al. 2018; 
Johnson et al. 2010). However, the contribution of birds as 
biological pest control agents in agricultural landscapes 
has been largely underestimated (García et al. 2020). On 
the contrary, birds in agricultural landscapes are generally 

associated with environmental disservices by farmers (Lin-
dell et al. 2012), since they can act as a pest in some cases, 
such as fruit-eating bird (Shave et al. 2018). For instance, 
bird damage to crops can cause losses of USD 189 million 
in five crops (e.g., Honeycrisp apples, wine grapes, blueber-
ries, and sweet and tart cherries) (Anderson et al. 2013) and 
USD 1.3 million in corn (Klosterman et al. 2013) both in the 
USA; or they can have a neutral effect on yield, as arthropod 
suppression can equal the damage inflicted by birds (Gon-
thier et al. 2019). In addition, birds can suppress agricul-
tural pest predators (i.e., intraguild predation; Rosenheim 
et al. 1993; Letourneau et al. 2009; Olimpi et al. 2020). For 
example, birds can prey on certain spider species, which are 
generalist predators that consume agricultural pests, thereby 
providing a disservice to farmers (Greenberg et al. 2000; 
Recher and Majer 2006; Grass et al. 2017).

Notwithstanding, several works and recent reviews have 
highlighted the importance of wild birds suppressing pests 
in agricultural landscapes, reducing crop damage (Greenberg 
et al. 2000; Pejchar et al. 2018; García et al. 2020; Boesing 
et al. 2017), consuming sentinel preys (Jedlicka et al. 2011; 
García et al. 2021), reducing pest abundance (Mols and Vis-
ser 2007; Karp et al. 2013), and increasing yield (Mols and 
Visser 2002; Gras et al. 2016). These studies have shown 
that the use of birds as biocontrol has positive impacts on 
herbivores abundances, crop damage and local economies. 
For instance, Shave et al. (2018) found that for every US 
dollar spent on a raptor's nest box to control birds, a loss of 
up to 220 US dollars in sweet cherry crops could be avoided. 
The nature of pest control and insect-insect interactions is 
highly context-dependent, and any conclusion must consider 
system-specific factors that may override any general ben-
efits in ecosystem services (Karp et al. 2018).

Although, the ultimate goal of ecological intensification 
practices is to quantitatively evaluate the link between pest 
control and crop production. Despite being discussed in 

Fig. 1  Graphical representa-
tion of bird-mediated pest 
suppression, and the effects of 
their exclusion on crop dam-
age. Illustrations by ©Pen & 
Paper (https:// en. penan dpaper- 
sci. com/)

https://en.penandpaper-sci.com/
https://en.penandpaper-sci.com/
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reviews and previous research, studies that have assessed 
quantitatively such a link are scarce (Karp et al. 2013). Thus, 
there is a clear knowledge gap to better understand and quan-
tify the overall effect of bird-mediated pest control, as well 
as the effect on crop production, particularly under differ-
ent agroecosystem managements and geographical zones. 
Furthermore, it is important to identify the main drivers 
that explain the positive, negative, or neutral effects of bird 
suppression in pest populations. Understanding the effects 
of wild bird species as biocontrol agents in agroecosystems 
represent vital information for landowners and farmers to 
effectively design and sustainably manage agroecosystems 
in the long term and contributes to helping improve farmers’ 
perceptions of biodiversity (Jacobson et al. 2003; Kross et al. 
2018). Therefore, we hypothesized that excluding wild birds 
would increase crop damage and pest abundance, as well as 
reduce crop yield. To test this hypothesis, we reviewed the 
scientific literature and conducted a formal meta-analysis 
to understand the net outcomes of bird-mediated biologi-
cal control services on crop production, the effect on pest 
abundances, and production across different crop varieties, 
managements and ecosystems.

Materials and methods

Literature survey and data inclusion criteria

We searched the available literature on the Web of Science 
database (covering January 1977 to June 2020) using the 
following search strings: “bird” OR “avian” + “insectivory” 
OR “herbivory” OR “predation” OR “control” OR “reduc-
tion” OR “consumption” OR “suppression” + “insect” OR 
“arthropod” OR “plague” OR “larva*” OR “pest” OR “verte-
brate” + “crop” OR “agr*” OR “field” OR “farm*” + “yield” 
OR “abundance” OR “herbivory” OR “damage” OR “pro-
duction”. We also incorporated the literature surveys used in 
previous meta-analyses and reviews (Van Bael et al. 2008; 
Lima 2009; Mäntylä et al. 2011; Labuschagne et al. 2016; 
Boesing et al. 2017; Lindell et al. 2018; Maas et al. 2019; 
Chain-Guadarrama et al. 2019; Marsden et al. 2020; Paiola 
et al. 2020; García et al. 2020) (the original database of the 
literature search is freely available from the figshare digital 
repository: https:// doi. org/ 10. 6084/ m9. figsh are. 14307 860). 
Our literature survey followed the Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses (PRISMA) 
statement, which provides a standardized framework for 
meta-analyses and systematic reviews (Moher et al. 2009). 
Similarly, we followed the recommendations of Nakagawa 
et al. (2017) to obtain the informative results by taking 
into account data independence, publication bias, and the 
potential influence of outliers. To ensure a minimum quality 
standard for the data obtained and the study’s replicability, 

we limited our search to peer-reviewed articles in English, 
excluding the gray literature and other databases. Our initial 
search provided 996 articles, which were limited to 70 after 
we filtered for off topic studies or the irrelevant results as 
described below (i.e., studies carried out in non-agricultural 
system, focused on another predator taxa, or reporting unre-
lated response variables; see Supplementary Material Fig. 
S1).

Each article was downloaded in full. We read every arti-
cle to determine if they met the following criteria: (1) com-
paring a control situation (i.e., wild birds present) with an 
experimental situation (i.e., exclusion or attraction of wild 
birds) in different types of agricultural lands; (2) reporting 
either crop damage, pest abundance, or crop yield (or a com-
bination of them) as response variables; (3) reporting the 
mean, sample size, and a dispersion measure (i.e., either 
standard error, standard deviation, or confidence intervals; 
transformed to standard deviation prior to perform effect 
size calculations) of the dependent variables. The article 
selection procedure was simultaneously performed by two 
researchers (PD-S and NO-M) to minimize reviewer bias. 
As a result of the selection process, we excluded 15 articles 
from the 70 articles initially chosen as they did not meet the 
inclusion criteria (see details on the figshare digital reposi-
tory: https:// doi. org/ 10. 6084/ m9. figsh are. 14307 860). As a 
result, 55 articles were considered, which provided a total 
of 179 case studies: 57 of them were related to crop damage, 
103 to pest abundance, and 19 to crop yield (Supplemen-
tary Material Fig. S1). Since some papers presented more 
than one case study, we considered the results from different 
locations as independent cases. However, we used the result 
with the largest effect size, following the criteria performed 
by Mäntylä et al. (2011), because it can be more critical to 
plants and to discarded temporal replicates (i.e., repeated 
measures) to avoid temporal pseudoreplication.

Model, effect size, and moderators

As we included studies reporting a variety of species, crop 
types, and geographic locations, there is unlikely to be a sin-
gle common effect (Borenstein et al. 2009). Consequently, 
we used mixed-effects models to examine effects using 
moderator variables. To examine the overall heterogeneity, 
we used the Qtotal statistic, and to examine heterogeneity 
among moderator levels, we estimated the between-group 
heterogeneity Qbetween statistic. Q-statistics are heterogeneity 
measures that use a χ2-distributed statistics to compare the 
variation among and within levels (Higgins et al. 2003). A 
significant Qbetween value (i.e., with P < 0.05) indicates that 
there is significant variation among the effects among mod-
erator levels (i.e., moderator levels do not share a common 
effect, having opposing trends). Thus, Q-statistics are more 
appropriate for random-effects models than other approaches 

https://doi.org/10.6084/m9.figshare.14307860
https://doi.org/10.6084/m9.figshare.14307860
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(e.g., τ2 or I2), which are intended for fixed-effects models 
only (Borenstein et al. 2009).

We used Hedges’ d unbiased standardized mean differ-
ence to measure the effect size of each case study (Hedges 
and Olkin 1985). This measurement is commonly used to 
estimate the magnitude of a particular situation’s effect by 
comparing a control and an experimental group (Gurevitch 
et al. 2001). As most studies excluded wild birds, we consid-
ered the wild bird presence as a control and the exclusion of 
them as the experimental trial. However, a few case studies 
reported the results from attraction experiments (i.e., the 
opposite of excluding wild birds); in those cases, we used 
an inverse effect direction to make the effects comparable 
with those from the exclusion experiments. We conducted 
separate analyses for crop damage, pest abundance, and crop 
yield, estimating the overall effects of wild bird exclusion 
or attraction on these three response variables. To explore 
our results further, we used moderator variables, which are 
categorical variables contrasting two or more levels, to test 
if there are effect size differences among them and detect 
contrasting responses. We defined five moderator variables: 
(1) geographical zone (tropical or temperate); (2) crop type 
(i.e., brassica, cereals, coffee, cacao, macadamia, apple, 
vineyard, groundnut, alfalfa, palm, strawberry, or raps); (3) 
agriculture type (i.e., conventional, organic, agroforestry, or 
mixed when a study used more than 1 agriculture crop); (4) 
pest type (birds, arthropods, voles, or even sentinels as study 
models); and (5) experiment type (exclusion or attraction). 
There were sample size asymmetries among moderator lev-
els, for which we excluded levels with N < 4 as we consider 
them non-informative. Finally, special care was taken when 
interpreting moderator levels N < 10.

Publication bias assessment

The meta-analysis results can be influenced by potential pub-
lication bias, as those articles reporting significant effects are 
more likely to be published than those reporting nonsignifi-
cant ones (Rosenberg 2005). To assess our results’ robust-
ness, first, we examined the relationship between effect 
and sample size using the funnel plot approach (Hedges 
and Vevea 1996) followed by an Egger’s regression to test 
the statistical significance of potential funnel plot asym-
metries (Egger et al. 1997). If significant asymmetries were 
detected, we conducted a sensitivity test recalculating the 
results after removing outlier points (as recommended by 
Nakagawa et al. 2017). We also examined the correlation 
between effect size and its variance using a Kendall corre-
lation test with continuity correction, and then we used the 
Baujat plot (Baujat et al. 2002) to visually assess sources of 
heterogeneity. We then conducted a “trim and fill” analysis 
(Duval and Tweedie 2000a, b), which takes into account the 
asymmetry between positive and negative case distributions, 

which may be potentially biasing the results. This approach 
recalculates the mean effect and confidence intervals after 
balancing positive and negative cases (by trimming and fill-
ing cases on both sides of the funnel plot) to validate the 
results’ robustness (Jennions and Møller 2002). All analyses 
were conducted using R 4.0.3 (R Development Core Team 
2020) and the “meta” package (Balduzzi et al. 2019).

Results

Effects on crop damage

Overall, we found that excluding wild birds significantly 
increased crop damage (Fig. 2a; Qtotal = 38.61, P = 0.003). 
Our geographical zone analysis revealed that tropical and 
temperate zones showed the same trend as the overall 
result (Fig. 2b; Qbetween = 0.03, P = 0.568), with a signifi-
cant increase of crop damage when wild birds were absent. 
Our crop type analysis showed mixed responses (Fig. 2c; 
Qbetween = 6.21, P = 0.184) with significant damage on cof-
fee, apple, and vineyard crops when wild birds were absent. 

Effect size (Hedges' d)
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Fig. 2  Effects of bird exclusion on crop damage. We present the mean 
and the 95% confidence interval for a the overall effect, b geographi-
cal region, c crop type, d agriculture, e pest type, and f experiment 
type. QB = Qbetween statistics. Significance: NSP ≥ 0.05, *P < 0.05, 
**P < 0.01, ***P < 0.001
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The results by agriculture type showed contrasting effects 
(Fig. 2d; Qbetween = 5.03, P = 0.169), with significant crop 
damages on conventional and mixed fields, while there 
were nonsignificant effects of damage on agroforestry and 
organic fields when wild birds were absent. When examin-
ing our data by pest type, we found that wild birds reduced 
crop damage by both pest birds and arthropods (Fig. 2e; 
Qbetween = 4.09, P = 0.043), but that the effects on pest birds 
were larger and more varied. Finally, when comparing exper-
imental types, we found significant differences in crop dam-
age at both exclusion and attraction experiments (Fig. 2f; 
Qbetween = 3.40, P = 0.065). However, attraction experiments 
showed a larger variability than exclusion experiments.

Effects on pest abundance

Overall, we found that excluding wild birds causes a sig-
nificant increase in pest abundance (Fig. 3a; Qtotal = 210.09, 
P < 0.001). The results by geographic zone showed that trop-
ical and temperate zones have a similar trend as the overall 
effect; however, birds reduced pest abundance more in tropi-
cal areas than in temperate areas (Fig. 3b; Qbetween = 3.07, 

P = 0.080). Our crop type results showed heterogeneous 
responses (Fig.  3c; Qbetween = 20.60, P = 0.001) with a 
significant increase in pest abundance for coffee, cereal, 
and apple crops when wild birds were absent. In relation 
to agriculture type, we found contrasting effects (Fig. 3d; 
Qbetween = 5.7.8603, P < 0.001), as there was a significant 
increase in pest abundance in conventional fields, as well 
as in agroforestry and mixed land, but not in organic fields 
when wild birds were absent. The results of our pest type 
analysis showed that bird and arthropod pest abundance 
increased when wild birds were absent; this was not the 
case for the abundance of voles and sentinels, which did not 
change when wild birds were absent (Fig. 3e; Qbetween = 5.92, 
P = 0.115). Finally, we found that exclusion experiments had 
a larger influence on pest abundance than those experiments 
that attracted birds (Fig. 3f; Qbetween = 4.01, P = 0.045).

Effects on crop yield

Overall, we found that excluding wild birds significantly 
reduces crop yield (Fig. 4a; Qtotal = 38.61, P = 0.003). Our 
analysis by geographic zone showed a significant reduction 

Effect size (Hedges' d)
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Fig. 3  Effects of bird exclusion on pest abundance. We present the 
mean and the 95% confidence interval for a the overall effect, b 
geographical region, c crop type, d agriculture, e pest type, and (f) 
experiment type. QB = Qbetween statistics. Significance: NSP ≥ 0.05, 
*P < 0.05, **P < 0.01, ***P < 0.001
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Fig. 4  Effects of bird exclusion on crop yield. We present the mean 
and the 95% confidence interval for a the overall effect, b geographi-
cal region, c crop type, d agriculture, e pest type, and f experiment 
type. QB = Qbetween statistics. Significance: NSP ≥ 0.05, *P < 0.05, 
**P < 0.01, ***P < 0.001
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in crop yield at tropical zones but not at temperate zones, 
when wild birds were absent (Fig.  4b; Qbetween = 0.25, 
P = 0.614). However, when looking at our results by crop 
type, we found that excluding birds had no effects on yield in 
coffee and cereal crops (Fig. 4c; Qbetween = 1.35, P = 0.245). 
We were unable to perform comparisons for agriculture type 
(Fig. 4d), pest type (Fig. 4e), and experiment type (Fig. 4f) 
because of low variability (i.e., only one level).

Publication bias

Our funnel plot analysis showed an even distribution of 
positive and negative cases for crop damage data (Fig. 
S2). Yet, it also revealed a significant general asymmetry 
(t = 2.48, df = 55, P = 0.016) between positive and negative 
cases. Although there were some outlier points for both pest 
abundance (Fig. S3) and crop yield (Fig. S4), we found no 
significant asymmetry for either (pest abundance: t = 1.14, 
df = 101, P = 0.256; crop yield: t = 0.79, df = 16, P = 0.440). 
We detected a significant correlation between effect size 
and its variance for crop damage data (Kendall’s tau = 0.28, 
df = 54, P = 0.002), but no significant correlation was found 
for pest abundance (tau = 0.06, P = 0.402) or crop yield data 
(tau = 0.29, P = 0.080). Baujat plots (Figs. S4, S5, and S6) 
showed a regular pattern, in which most case studies have 
low contributions to heterogeneity and a few outlier points 
have large contributions.

We conducted a sensitivity analysis excluding outlier 
cases, but we found nonsignificant effects on our results’ 
direction and significance (Table S1). Likewise, our results 
did not change in either significance or direction after per-
forming the “trim and fill” procedure (Table S2). The latter 
indicates that our study results were robust and not influ-
enced by publication bias in any case.

Discussion

Our study shows that the exclusion of the wild birds results 
in a significant increase in crop damage (Fig. 1) and pest 
abundances, as well as a significant reduction in crop yields. 
Given that wild birds can significantly decrease crop damage 
and pest abundance, it is essential to understand better their 
net impacts on crop production to inform policymakers and 
farm managers and achieve sustainable goals.

By highlighting the role of wild birds in agroecosystems, 
our results reinforce the importance of vertebrate preda-
tors as biological control agents. This contrasts with the 
traditional paradigms and perceptions of biological control 
centered on parasitoids and predatory insects. Our study 
supports the ecological intensification of farming practices, 
since birds’ ecosystem contribution—as biological control 
agents—translates into increased productivity, which is the 

ultimate goal of ecological intensification (Tittonell 2014). 
Interestingly, we observed an important variation in our 
response variables (i.e., crop damage, pest abundance, and 
crop yield) across crop types, climatic regions, and agricul-
tural management when wild birds were excluded. Pest-nat-
ural enemies’ interaction is highly context-dependent (Karp 
et al. 2018). For instance, excluding wild birds in organic 
farms did not lead to a reduction in crop damage or pest 
abundance, while excluding them in conventional farms did 
have a significant effect. A similar result has been previ-
ously reported for organic apple farms by Mols and Visser 
(2007), with organic farming promoting a higher species 
diversity, particularly natural enemies, than conventional 
methods (Clough et al. 2007; Letourneau and Goldstein 
2001). Hence, pests are diluted in the herbivore community 
and subject to a wider diversity of potential natural enemies 
(Letourneau and Goldstein 2001), which resulted in lower 
effect of wild birds on pests crop damage and lower pests 
abundances in organic farms (see Figs. 2 and 3; Muneret 
et al. 2018). Based on our results and previous work, there 
seems to be a clear link between the ecological context 
of agricultural land and its resilience to biodiversity loss 
(Muneret et al. 2018; Letourneau and Goldstein 2001).

Most studies on avian-mediated pest control have been 
conducted in tropical areas (49%) rather than in temperate 
(35%) or Mediterranean agroecosystems (16%) (Fig. S8). 
The predominance of tropical areas has been seen over time, 
although there has been an increase in the number of studies 
focused on other geographical areas (Boesing et al. 2017). 
Mediterranean regions are considered as global biodiversity 
hotspots for conservation (Myers et al. 2000). However, they 
also represent one of the most vulnerable ecosystems on the 
planet because of the negative effects of land-use change 
and the intensive establishment of forestry and agriculture 
(Sala et al. 2000; Armesto et al. 2010). Thus, identifying the 
contribution of biodiversity to crop production in Mediterra-
nean regions is key to promoting sustainable land-use man-
agement and conservation of productive and natural areas 
(Cox and Underwood 2011). Conservation of natural areas 
near agricultural land can benefit pest-regulation services 
in agricultural landscapes (Tscharntke et al. 2012). A larger 
variety of wild bird-mediated pest control species have been 
frequently reported in woodland landscapes (Boesing et al. 
2017; Sanz 2001).

It is important to acknowledge two important biases of 
the present study. First, 78% of the studies reviewed here 
were conducted in the Northern Hemisphere (Fig. S8). This 
knowledge gap results from a lack of data reported from the 
Southern Hemisphere in terms of research and monitoring 
of global ecosystems (Rozzi et al. 2012). This misrepresen-
tation of the southern world is an important issue to take 
into account for agricultural and conservation management 
purposes. Second, most of the published studies included 
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in our meta-analysis only considered coffee, cereal, and 
apple crops, all of which represent over 60% of the pub-
lished research. The reduced variety of crops included in the 
international literature highlights an urgent need to expand 
research to other crops.

Previous work on the role of birds in agroecosystems 
showed that landscape structure has an important effect on 
species diversity (Boesing et al. 2017; Muñoz-Sáez et al. 
2021). Birds and arthropods in agroecosystems interact 
in complex ways (Pejchar et al. 2018; García et al. 2020). 
Although previous studies have found that wild birds can 
have ecosystem disservice effects (Grass et al. 2017; Martin 
et al. 2013), our global meta-analysis highlights the impor-
tance of wild birds in increasing crop productivity through 
pest suppression. We emphasize that although there is the 
extensive literature on bird effect on pest abundance and 
crop damage, few studies (ca. 20%) have related these vari-
ables to productivity. Therefore, more research is needed to 
gain a better understanding of the relationship between wild 
birds and crop production.

Based on the available literature and our results, we rec-
ommend that wild birds be considered as effective biologi-
cal control agents, and important components of sustain-
able pest management strategies (García et al. 2020). In this 
context, our review reveals that only 16% of our selected 
articles had increased bird diversity through ecological 
innovation practices (e.g., perches or nest boxes). We found 
that attracting wild birds, as an ecological intensification 
tools that is easily implemented by farmers, could signifi-
cantly reduce crop damage and pest abundance (García et al. 
2021). For instance, nest boxes for insectivorous birds or 
raptors provide a highly cost-effective ecosystem service to 
control fruit-eating birds or arthropods (Shave et al. 2018; 
García et al. 2021; Suhonen et al. 1994), and in-farm evalu-
ation could be a way to improve farmer attitudes toward the 
conservation of biodiversity (Jacobson et al. 2003; Kross 
et al. 2018), and a bridge to advance toward other ecological 
intensification practices (Kleijn et al. 2019). In fact, as was 
proposed by García et al. (2021), attracting birds to farms by 
ecological innovations, farmers should receive direct benefit 
reported in this study, as well as indirect benefits through 
reduction of pesticide with the associated consequences of 
environmental damage. These innovations could be the focus 
on public subsidies from, (1) environmental policy focused 
on biodiversity conservation in rural landscapes, and (2) 
from agricultural policy focused to increase productivity in 
a sustainable way. Therefore, enhancing crops with ecologi-
cal innovation practices can promote both biological control 
and biodiversity conservation within productive landscapes.

Finally, it is important to highlight that many studies 
have documented that most farmers associate birds with 
environmental disservices (e.g., damage to fruit crops) and 
that bird-friendly practices are not associated with economic 

incentives (Jacobson et al. 2003). However, our results sup-
port the idea that ecological intensification practices can 
complement and, in some cases, replace the use of pesticides 
or exotic enemy releases for biological control, with produc-
tion-supporting ecological processes to sustain agricultural 
production (Bommarco et al. 2013; Kross et al. 2018; Smith 
et al. 2021).

Conclusion

Our global analysis showed that wild birds play a major role 
in pest control services in agroecosystems. In particular, 
wild birds in agroecosystems reduce crop damage and pest 
abundance, resulting in a significant increase in crop yield. 
We encourage farmers and land-use managers to embrace 
ecological intensification practices that represent a win–win 
strategy to benefit food production and the environment.
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